Paraphrase-Supervised Models of Compositionality
نویسندگان
چکیده
Compositional vector space models of meaning promise new solutions to stubborn language understanding problems. This paper makes two contributions toward this end: (i) it uses automaticallyextracted paraphrase examples as a source of supervision for training compositional models, replacing previous work which relied on manual annotations used for the same purpose, and (ii) develops a contextaware model for scoring phrasal compositionality. Experimental results indicate that these multiple sources of information can be used to learn partial semantic supervision that matches previous techniques in intrinsic evaluation tasks. Our approaches are also evaluated for their impact on a machine translation system where we show improvements in translation quality, demonstrating that compositionality in interpretation correlates with compositionality in translation.
منابع مشابه
Simple PPDB: A Paraphrase Database for Simplification
We release the Simple Paraphrase Database, a subset of of the Paraphrase Database (PPDB) adapted for the task of text simplification. We train a supervised model to associate simplification scores with each phrase pair, producing rankings competitive with state-of-theart lexical simplification models. Our new simplification database contains 4.4 million paraphrase rules, making it the largest a...
متن کاملSimple PPDB: A Paraphrase Database for Simplification
We release the Simple Paraphrase Database, a subset of of the Paraphrase Database (PPDB) adapted for the task of text simplification. We train a supervised model to associate simplification scores with each phrase pair, producing rankings competitive with state-of-theart lexical simplification models. Our new simplification database contains 4.5 million paraphrase rules, making it the largest a...
متن کاملEvaluating Compositionality in Sentence Embeddings
An important frontier in the quest for human-like AI is compositional semantics: how do we design systems that understand an infinite number of expressions built from a finite vocabulary? Recent research has attempted to solve this problem by using deep neural networks to learn vector space embeddings of sentences, which then serve as input to supervised learning problems like paraphrase detect...
متن کاملDetecting Compositionality of Multi-Word Expressions using Nearest Neighbours in Vector Space Models
We present a novel unsupervised approach to detecting the compositionality of multi-word expressions. We compute the compositionality of a phrase through substituting the constituent words with their “neighbours” in a semantic vector space and averaging over the distance between the original phrase and the substituted neighbour phrases. Several methods of obtaining neighbours are presented. The...
متن کاملAMRITA_CEN$@$SemEval-2015: Paraphrase Detection for Twitter using Unsupervised Feature Learning with Recursive Autoencoders
We explore using recursive autoencoders for SemEval 2015 Task 1: Paraphrase and Semantic Similarity in Twitter. Our paraphrase detection system makes use of phrase-structure parse tree embeddings that are then provided as input to a conventional supervised classification model. We achieve an F1 score of 0.45 on paraphrase identification and a Pearson correlation of 0.303 on computing semantic s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1801.10293 شماره
صفحات -
تاریخ انتشار 2018